Searching for Dark Matter with CEvNS Detectors

Dan Pershey (Duke University)
Oct 1, 2020

Snowmass NF03 Kickoff Meeting

Coherent Elastic v-Nucleus Scattering (CEvNS)

- \square At low Q^2 , a neutrino may interact with an atom whose nucleons recoil in-phase
 - Quantum coherence increases the cross section: $\sigma \propto N^2$
 - Precisely predicted in the standard model
 - CEvNS itself is a rich probe of BSM physics

- Experimental signature is a low-energy nuclear recoil
- Need low-threshold detectors
- Need high-flux of low-energy neutrinos

The COHERENT Experiment

Layout of COHERENT detectors in Neutrino Alley

- \square Uses high flux π -DAR neutrino flux from Spallation Neutron Source at ORNL
- Basement hallway "Neutrino Alley" identified as sufficiently neutron-quiet to study CEvNS
- Ongoing effort to measure CEvNS on several atoms
 - Csl: Science 357 (2017) 6356, 1123-1126 (first CEvNS detection!)
 - Ar: arXiv 2003.10630
 - Funded future detectors to study CEvNS on Ge and Na

Dark Matter at Spallation Sources

 \square Huge number of proton collisions in target may produce portal particles (V) that mediate interactions between SM and hidden sector particles (χ)

Benchmark Model:
$$\mathcal{L} = \mathcal{L}_{\chi} - \frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}m_V^2V_{\mu}V^{\mu} - \frac{\kappa}{2}V^{\mu\nu}F_{\mu\nu}$$
 E.g., deNiverville et al., Phys Rev **D92** 095005 (2015)

- \square Predicted χ is a viable WIMP candidate for masses below 1 GeV/c²
- \square Introduces two additional couplings: ε^2 from kinematic mixing with photon and α' from $V\chi\chi$ vertex (analogous to $\alpha_{\rm em}$)
- ☐ The cosmologically observed dark matter flux is proportional to a simple combination of model parameters: $Y = \varepsilon^2 \alpha' \left(\frac{m_\chi}{m_{\odot}}\right)^4$

Neutrino Timing at the SNS

- \square In a π -DAR beam, neutrinos are produced from pion and muon decays
 - $\pi^+ \to \mu^+ + \nu_{\mu}$ $\tau = 26 \text{ ns}$
 - $\mu^+ \to e^+ + \nu_e + \bar{\nu}_{\mu} \tau = 2200 \text{ ns}$
- \square SNS beam is 340 ns FWHM, much larger than τ_{π} and much less than τ_{μ}
 - Neutrino flux sum of "prompt" ν_{μ} and "delayed" $\nu_{e} + \overline{\nu}_{\mu}$
 - ullet DM would be relativistic, created from V decay in flight, and coincident with prompt flux

See Dutta et al., PRL 124 121802

DM Scattering in CEvNS Detectors

DM Scattering:

- $lue{}$ Detectors with a low-enough threshold to observe CEvNS would also be sensitive to coherent $\chi-A$ scattering
- The cross section is similarly large and precisely calculable so that a dark matter detector sensitive to CEvNS may be competitive with much larger experiments

Nuclear Recoil Detection with Liquid Argon

- Liquid argon is a favorable detection material for dark matter searches
 - Experience within the collaboration with argon prototype detector
 - High light yield gives a threshold around 20 keV_{nr}
 - Background mitigation through efficiency pulse-shape discrimination
 - Use of underground argon significantly reduces beam-unrelated background
 - Scalability
- A ton-scale argon scintillation calorimeter in Neutrino Alley would improve on current DM constraints supplementing CEvNS physics goals
- □ A second, roughly 10 t, on-axis detector would aggressively constrain DM models, broadly probing parameter space consistent with the cosmological DM concentration

Detecting DM Scatters in Liquid Argon

Prompt events after 610 kg x 3 yrs

Steady-state Bkg†	2790
Beam Neutrons	971
CEvNS	5469
DM	1501

†Assuming underground argon

- □ DM sample distinguishable from backgrounds using time and energy
 - DM spectrum extends to higher recoil energies than CEvNS distribution
 - DM particles are relativistic, scatter within the prompt window (0 < t_{rec} < 1 μs) coincident with proton arrival at the target
 - Delayed window (1 < t_{rec} < 6 μs) gives in-situ measurement of neutrino bkg and is a strong constraint of systematic uncertainty

10-ton Detector at Second Target Station

- □ SNS upgrade plans includes a second target station (STS)
 - Propose a 10 t argon detector at the STS
 - Working with ORNL to plan a new detector hall on-axis with special consideration from neutron shielding
 - During operations, 25% of spills will be delivered to STS / 75% to first target station (FTS)

Utilizing Angular Dependence of DM Flux

- \Box The neutrino flux in a π -DAR beam is isotropic, but the flux of any dark matter would be boosted
 - Placing detector on-axis at the STS increases S/B
- On-axis at the STS is off-axis from the FTS
 - If a DM-like excess is observed, this angular dependence can be directly tested with the same detector when analyzing data from FTS and STS beam spills separately

DM Sensitivity from COHERENT

Assuming a scalar DM candidate

- With a 10 t detector on-axis at the STS we can place very ambitious DM constraints
- Delayed CEvNS mitigate systematic uncertainties, preventing searches from being systematically limited even after 50 t-yr
- \Box The thermal target relating to the cosmological dark matter concentration can be probed for all perturbative $\alpha'<1$ for $4< m_\chi<100$ MeV/c²

Extras

Duke

Sensitivity Dependence on DM Couplings

The COHERENT liquid argon detector will test DM consistent with cosmological flux assuming $\alpha' < 0.1$

A 10 t on-axis detector would push constraints on scalar and Majorana DM past the perturbative limit

Can test reasonable parameter space for pseudo-Dirac DM

Constraining CEvNS with Timing Info

- □ Proposed dark matter would be relativistic → the prompt time window is the analysis region of interest
- □ But ... systematic uncertainties stifle our ability to robustly identify signal
- □ Underestimating the neutrino flux by 10% would give a ≈550 event excess in the ROI that could be mis-interpreted as a dark matter signal

Bkg-Subtracted Counts

	Prompt
Prediction	5469
Fake Data	6016 (+10%)

Constraining CEvNS with Timing Info

- □ But, an uncertainty on the neutrino flux would affect delayed events too
- Observed data in the delayed timing sideband constrains systematic uncertainties relevant for understanding the CEvNS background in the ROI

Bkg-Subtracted Counts

	Prompt	Delayed
Prediction	5469	7450
Fake Data	6016 (+10%)	8195 (+10%)

Delayed sideband gives unique information for experiments in π -DAR beams!

Constraining CEvNS with Timing Info

- □ To understand the power of the constraint, imagine fitting just the delayed sideband to this fake-data with the flux normalization shifted at +10%
- □ Without analyzing events in the ROI, we've determined we must increase the CEvNS background prediction by 9.3%

Bkg-Subtracted Counts

	Prompt	Delayed
Prediction	5469	7450
Fake Data	6016 (+10%)	8195 (+10%)
Fit	5980 (+9.3%)	8146 (+9.3%)
·		

Base simulation underestimates the prompt CEvNS bkg by 10%, but a sideband reduces the effect to 0.7%

Error Budget for Identifying DM Scatters

- Without this delayed sideband constraint, a dark matter search would be limited by systematic uncertainties
- □ Allows for a more detailed understanding of the distinctive recoil energy spectrum expected for DM scatters
- After COHERENT dark matter program, the analysis will be dominated by statistical errors → future paths for DM searches with CEvNS detectors